Video

TE keynote lectures

*Part 1: Introduction to transposable elements (38 minutes) by Susan Wessler

*Part 2: How transposable elements amplify throughout genomes (70 minutes) by Susan Wessler

*Transposable Element-mediated Structural Variation: From McClintock to Pangenomes – YouTube by Susan Wessler, department of Botany and Plant Sciences, University of California (55 minutes)

The Dynamic Genome: Unintelligent Design – YouTube by Susan Wessler department of Botany and Plant Sciences, University of California (60 minutes)

LINE1 by Haig Kazazian Jr – YouTube 43′

阅读更多

DNA 转座子研究进展

GroupSuperfamilyFamilyIdentified in our LabIdentified by other Lab
IS630-Tc1-mariner/ITm Tc1/marinerDD34E/ZB and ZB likeY
DD34E/SB and SB like Y
DD34E/Skipper (SK) Y
DD34E/Passport?
DD34E/Frog Prince?
DD35E/Traveler (TR) Y
DD36E/Incomer (IC)Y
DD37E/TRT Y
DD37E/Mosquito (MS) Y
DD38E/Intruder (IT) Y
DD34D/Mariner Y (unpublished data)
DD37D/maT Y
DD39D/Guest (GT) Y
DD41D/Visitor (VS) Y
pogoFot/Fot-like (DD35D) Y
Passer (PS)/DD35D Y
Tigger/DD29-36 Y
pogoR/DD29-59D Y
Lemi/DD29D-42D Y
Mover/DD36EY
DD82E/Sailor DD82E/Sailor Y
DD34E/Gambol DD34E/Gambol (GB) Y
DD35E/Hiker (HK)Y
IS256/DxxHhAT TcBuster/TB Y
Ac ?
Tip ?
Cleaner/CNY (unpublished data)
Dancer/DN Y (unpublished data)
Roamer/RM Y (unpublished data)
MuDR MuDR ?
IS1380/piggyBac piggyBac PokeyY (unpublished data)
?
IS5/PHIS PHISPIF/Harbinger Y
ISL2EU Y
Spy Y (unpublished data)
Pangu Y
NuwaI Y
NuwaII Y
CCHH Transib Transib ?
EnSpm/CACTA EnSpm/CACTA?
阅读更多

转座子科普: RepBase

一、转座元件 介绍

TE education: RepBase (girinst.org)

转座元件(Transposable element,TE)

转座元件(Transposable element,简称TE),又称转座子或移动元件,是一类DNA片段的集合,可以通过转座作用在基因组中从一个位置移动或复制到另一个位置。TE的长度范围从小于100个碱基对到超过20,000个碱基对不等。转座之后,很多类型TE两侧都含有短的(约1-20个碱基对)直接重复序列,这些直接重复序列是转座过程中从靶序列中衍生出来的靶位点重复序列(target site duplications,TSDs)。然而,一些TE类型,例如Helitron、几个Harbinger家族和CR1逆转座子,不产生TSDs。TSD的长度通常是一组TE及其相关物种的特征,但在不同家族和超家族中可能有所变化。在多数真核生物基因组中,TE是重复序列的主要成份。其他重复序列包括串联重复序列(卫星序列或微卫星)、零星的基因组重复以及一些多拷贝宿主基因(如rRNA、tRNA、组蛋白基因等)。事实上,TE可以被视为基因组内的寄生元件。同样地,细胞间病毒也可以被视为TE,因为它们可以整合到宿主基因组中,例如LTR-逆转录病毒。TE对宿主基因组具有多样化的进化影响。

阅读更多

转座子科普:维基百科

Transposable element – Wikipedia

转座元件

转座元件(TE),也称为转座子或跳跃基因,是DNA中的一种核酸序列,可以在基因组内改变其位置,有时会介导产生突变或逆转突变,从而改变细胞的遗传特征和基因组大小。转座往往导致相同遗传物质的复制。在人类基因组中,L1和Alu转座子是两个典型例子。巴巴拉·麦克林托克在1983年因发现转座子而获得了诺贝尔奖。 转座子在个性化医学中的重要性日益凸显;在多维大数据组学分析中,转座子也越来越受到关注。

在真核生物中,转座子占据了基因组的很大一部分,是真核细胞中DNA质量的主要决定因素。尽管转座子是自私的遗传元件,但许多转座子在基因组功能和进化中都发挥重要作用。转座子对于科学研究人员来说也非常有用,可以利用转座子对活有机体进行体内DNA遗传修饰。

转座子至少可以分为两大类:I类转座子(也称逆转录转座子),通常需要通过逆转录方式介导转座,而II类转座子(也称DNA转座子),能编码转座酶,介导转座(包括转座子在原有位置的切除和和新位置的插入),有些转座子也编码其他蛋白质。

阅读更多

转座子分类表

Copy-out–Paste-in IS elements identifed in prokaryotes

FamiliesgroupsSize-rangeDREndsIRsNb ORFFrameshiftChemistry
IS1IS1740-11808-9GGnnnTGY2ORFABDDE
ISMhu11900-46000-10Y2ORFAB
IS3IS9111250Y2ORFAB
IS1501200-16003-4TGY2ORFABDDE
IS4071100-14004TG
IS511000-14003-4TG
IS31150-17503-4TGa/g
IS21300-14005TG
IS481950-13004-15TGTY1
IS301000-17002-3Y1DDE
IS110IS1101200-15500NDEDD
IS1111Y *DEDD
IS2561200-15008-9Ga/gY1DDE
ISL31300-23008GGY1
IS211750-26004-8TGY2 *DDE
ISLre2
Based on reference: Copy-out–paste-in transposition of IS911: a major transposition pathway. Microbiol Spectrum 3(4):MDNA3-0031-2014 Reference

Classification, terminal features, TSD features and the number of entries of DNA transposons in Repbase

GroupSuperfamilyTerminiMechanismTSDEntries
IS630/MarinerMariner/Tc1YR..YRCut-and-pasteTA2,539
ZatorGG..CCCut-and-paste354
IS481/GingerGinger1TGT..ACACut-and-paste439
Ginger2/TDDTGT..ACACut-and-paste4–520
IS3/IS3EUIS3EUTAY..RTACopy-out–Paste-in?623
IS1016/MerlinMerlinGG..CCCut-and-paste8–975
IS256/DxxHhATYA..TRCut-and-paste5–82,955
MuDRGR..YCCut-and-paste8–91,345
PCA..TGCut-and-paste7–8189
KolobokRR..YYCut-and-pasteTTAA286
Dada?6–736
IS1380/piggyBacpiggyBacYY..RRCut-and-pasteTTAA377
IS5/PHISHarbingerRR..YYCut-and-paste31,097
ISL2EURR..YYCut-and-paste?288
SpyCut-and-pasteno
NuwaI
NuwaII
Pangu
CCHHEnSpm/CACTACAC..GTGCut-and-paste2–4715
TransibCAC..GTGCut-and-paste5123
KDZPZisupton??818
SolaSolaCut-and-paste
Sola1?Cut-and-paste4100
Sola2GRG..CYCCut-and-paste490
Sola3GAG..CTCCut-and-pasteTTAA28
 Unclassified SolaCut-and-paste1
?AcademYR..YRCut-and-paste3–490
?NovosibCA..TGCut-and-paste89
CryptonCryptonCopy-out–Paste-in
CryptonFCopy-out–Paste-in023
CryptonATTA..Copy-out–Paste-in017
CryptonI?Copy-out–Paste-in09
CryptonSTATGG..Copy-out–Paste-in059
CryptonV?Copy-out–Paste-in046
 Unclassified CryptonCopy-out–Paste-in80
HelitronHelitronTC..CTRRRolling circle0955
PolintonPolintonAG..CTSelf-synthesizing6108
Unclassified DNA transposon2,357
Total13,960

Eukaryotic cut-and-paste transposase superfamilies

Fig. 2. An unrooted consensus tree of the transposase superfamilies inferred from the presence or absence of the highly conserved residues in the signature strings. Bootstrap values are at the nodes. The arrows with labels indicate superfamily clusters merged in our revised classification. Shown on the right is a schematic representation of the DDE/D domain and the signature string for each superfamily. Conserved blocks are highlighted in blue, variable regions are in gray. White gaps are regions not drawn to scale. The DDE triads are highlighted in red. Alternative residues are marked by slashes; lowercase indicates that a residue occurs in <10% of the sequences in the alignment profile. The C/DH motif is highlighted in orange; the C(2)C, [M/L]H, and H(3-4)H motifs are highlighted in green.

List of Copy-out–Paste-in IS elements

List of mobile elements whose transposases have been examined by secondary structure prediction programs

FamilyElement (or protein) analyzedActive or # copies in genome1From secondary structure, type of DDE/D motif2Relevant references3
IS1IS1NISSto9>40*5DD(24)EDD(20)E* Nyman et al., 1981; Ohta et al., 2002, 2004; Siguier et al., 2009
IS15951. ISPna2?,DD(36)N”Siguier et al., 2009
2. ISH4?,DD(36)E”Siguier et al., 2009
3. IS1016C?,DD(34)E”Siguier et al., 2009
4. IS1595?,DD(35)N”Siguier et al., 2009
5. ISSod1113DD(34)HSiguier et al., 2009
6. ISNWi1?,DD(35)E”Siguier et al., 2009
7. ISNha5?,DD(33)E”Siguier et al., 2009
Merlin: MERLIN1_SMConsensusDD(36)EFeschotte, 2004
IS3IS911ActiveDD(35)EPolard and Chandler, 1995; Rousseau et al., 2002
IS481IS481?00*DD(35)E*Glare et al., 1990; Chandler and Mahillon, 2002
IS4IS50RActivePDB ID: 1muhDD(-strand)ERezshazy et al., 1993; Davies et al., 2000
IS701IS701ISRso17Active (15*)7DD(-strand)E*Mazel et al., 1991
ISH3ISC1359ISC1439A513DD(-strand)E
IS1634IS1634ISMac5ISPlu4Active (?0*)77DD(-strand)E*Vilei et al., 1999
IS5IS903ActiveDD(65)EDerbyshire et al., 1987; Rezshazy et al., 1993; Tavakoli et al., 1997
PIF/Harbinger: PIFa (Z. mays)ActiveDD(59)EZhang et al., 2001; Kapitonov and Jurka, 2004; Sinzelle et al., 2008
IS1182IS660ISPsy6314DD(-strand)ETakami et al., 2001
IS6IS6100ActiveDD(34)EMartin et al., 1990; Mahillon and Chandler, 1998
IS21IS21ActiveDD(45)EMahillon and Chandler, 1998; Berger and Haas, 2001
IS30IS30ActiveDD(33)ECaspers et al., 1984; Mahillon and Chandler, 1998
IS66IS679ISPsy5ISMac8Active333DD(-helical?)EHan et al., 2001
IS110IS492IS1111Active20DEDDDEDDPerkins-Balding et al., 1999; Buchner et al., 2005
IS256IS256ActiveDD(-helical)EMahillon and Chandler, 1998; Prudhomme et al., 2002
MuDr/Foldback (Mutator)ActiveDD(-helical)EEisen et al., 1994; Babu et al., 2006; Hua-Van and Capy, 2008
IS630ISY100ActiveDD(34)EDoak et al., 1994; Feng and Colloms, 2007
Tc1/mariner: Mos1 (D. mauritiana)ActivePDB ID: 2f7tDD(34)DPlasterk et al., 1999; Richardson et al., 2006
Zator: Zator-1_HM36*DD(43)E*Bao et al., 2009
IS982ISPfu35DD(47)EMahillon and Chandler, 1998
IS1380IS1380A?00*DD(-strand)E*Takemura et al., 1991; Chandler and Mahillon, 2002
piggyBac (T. ni)ActiveDD(-strand)DCary et al., 1989; Sarkar et al., 2003; Mitra et al., 2008
ISAs1ISAzo37DD(-strand)E/D?
ISL3IS31831IS651Active22DD(-helical)ESuzuki et al., 2006
Tn3Tn3 (E. coli)ActiveDD(-helical?)EGrindley, 2002
hATHermes (M. domestica)ActivePDB ID: 2bw3 DD(-helical)E insertionWarren et al., 1994; Rubin et al., 2001; Hickman et al., 2005
CACTACACTA1 (A. thaliana) En/Spm ZMActiveDD(-helical?)E/D?Miura et al., 2001; DeMarco et al., 2006
PDrosophilaActive?Rio, 2002
TransibTransib1_AGConsensusDD(-helical)EKapitonov and Jurka, 2005; Chen and Li, 2008
RAG1 (M. musculus)ActiveDD(-helical)EKim et al., 1999; Landree et al., 1999; Lu et al., 2006
SolaSola3-3_HMMultiple copies*DD(40)E*Bao et al., 2009

Hickman AB, Chandler M, Dyda F. Integrating prokaryotes and eukaryotes: DNA transposases in light of structure. Crit Rev Biochem Mol Biol. 2010 Feb;45(1):50-69. doi: 10.3109/10409230903505596.

Classification, distribution and the number of entries of LTR retrotransposons in Repbase

SuperfamilyTotal
Copia10,595
Gypsy6,694
BEL1,855
ERV
ERV11,967
ERV21,266
ERV3657
ERV4187
Lentivirus4
Unclassified ERV325
Unclassified LTR719
DIRS418

Classification, and the number of entries of non-LTR retrotransposons in Repbase

GroupCladeTotal
CRECRE43
R2R446
Hero23
NeSL106
R2159
DualenRandI/Dualen13
L1Proto16
L11,690
Tx1273
RTERTETP1
Proto247
RTEX138
RTE487
IOutcast23
Ingi17
Vingi141
I195
Nimb108
Tad1141
Loa74
R1237
Jockey243
CR1Rex195
CR1803
Kiri91
L2285
L2A5
L2B27
Crack140
Daphne227
AmbalAmbal8
PenelopePenelope477
SINESINE1/7SL95
SINE2/tRNA539
SINE3/5S30
SINEU17
Unclassified SINE112
Unclassified non-LTR retrotransposon179
Total7,341

Reference: Kenji K. Kojima, Structural and sequence diversity of eukaryotic transposable elements, Genes & Genetic Systems, 2019, Volume 94, Issue 6, Pages 233-252

Proposal of TE classes with some members having a DNA transposon phenotype

Reference: Benoît Piégu, Solenne Bire, Peter Arensburger, Yves Bigot, A survey of transposable element classification systems – A call for a fundamental update to meet the challenge of their diversity and complexity,
Molecular Phylogenetics and Evolution, Volume 86, 2015, Pages 90-109,
ISSN 1055-7903, https://doi.org/10.1016/j.ympev.2015.03.009.

Major Features of Prokaryotes IS families (ISfinder)

Overview of common transposon annotation tools



ApproachClass IClass II
NameNovo.Struc.Simil.LTRLINESINETIRHELMITE
RepeatMaskerxxxxxxxx
RepeatModelerxxxxxxx
CLARI_TE(107)xxxxxxxxx
TESeeker(41)xxxxxxx
PILER(40)xxxxxxx
Censor(108)xxxxxxx
RepLong(109)xxxxxxx
EDTA(44)xxxxxxxxx
MGEScan(110)xxxxxx
LTR_Finder(111)xx
LtrDetector(112)xx
LTRpred(73)xxxx
LTRharvest(66)xxxx
LTRdigest(113)xx
SINE-Finder(68)xxx
SINE-Scan(69)xxx
TIRvish(67)xx
HelitronScanner(42)xx
MUSTv2(70)xx
MiteFinderII(71)xx
MITE-Tracker(72)xx
detectMITE(45)xx
MITE-Hunter(47)xx
TransposonUltimate          
Refernce

转座子分布和结构

Distribution of TEs across the eukaryote phylogeny

 Reference genome size (sea green circles) varies dramatically across eukaryotes and is loosely correlated with transposable element content. Here, the honey bee TE content is likely an underestimate, as approximately 3% of the genome derives from unusual “large retrotransposon derivatives” (LARDs) (39). For ease of visualisation, DIRS elements have been included with LTRs and all Class II elements included under “DNA”. Data was acquired from genome RepeatMasker output files. Credit to Matt Crook for Volvox carteri silhouette and to Huang et al. for the figure inspiration (71).
阅读更多

科普视频

TE keynote lectures

*Part 1: Introduction to transposable elements (38 minutes) by Susan Wessler

*Part 2: How transposable elements amplify throughout genomes (70 minutes) by Susan Wessler

*Transposable Element-mediated Structural Variation: From McClintock to Pangenomes – YouTube by Susan Wessler, department of Botany and Plant Sciences, University of California (55 minutes)

The Dynamic Genome: Unintelligent Design – YouTube by Susan Wessler department of Botany and Plant Sciences, University of California (60 minutes)

阅读更多