科研合作

PEI, Germany:Prof./Dr Zoltan Ivics Research Division of Medical Biotechnology – Paul-Ehrlich-Institut (pei.de)

Gao Bo and Shen Dan, Academic visiting in PEI, Germany, 2018-2019
Mobilome Group, Academic visiting in PEI, Germany, 2019

University of Birmingham, UK: Professor Ferenc Mueller – Institute of Cancer and Genomic Sciences – University of Birmingham

Ferenc Mueller, Academic visiting Mobilome Lab, 2015
Ferenc Mueller, Academic visiting Mobilome Lab, 2013
Ferenc Mueller, Academic visiting Mobilome Lab, 2013
Ferenc Mueller, Academic visiting Mobilome Lab, 2013
Chengyi Song, Academic visiting in Karlsruhe Institute of Technology (KIT), Germany, 2006-2007

FNB, Germany: Prof./Dr Klaus Wimmers fbn-dummerstorf.de

Chengyi Song, Academic visiting in FBN, Germany, 2015

Università di Messina, Italy: Prof. Enrico D’Alessandro unime.it

上海细胞治疗集团 shcell.com

先正达集团 Syngenta | China

其它国际知名基因和细胞治疗企业(目前无合作项目)

Tessera Therapeutics

药明康德 (wuxiapptec.com)

药明巨诺 (jwtherapeutics.com)

传奇生物 (legendbiotech.cn)

赛业生物 (cyagen.com)

Tn Progress

GroupSuperfamilyFamilyIdentified in TnLabTn number detectedSpecies number containing TnIdentified in other Lab
ITmTc1/marinerDD34E/ZB and ZB likeX629629 JWZ
DD34E/SB and SB likeX366366 JWZ
DD34E/Skipper (SK)X254200 WSS
DD35E/Traveler (TR)X9191 GB
DD36E/Incomer (IC)X154141 SYT
DD37E/TRT    
DD37E/Mosquito (MS)X7373 XKL
DD38E/Intruder (IT)X142142 ZWC
DD34D/MarinerX   
DD37D/maTX147147 WSS
DD39D/Guest (GT)X177177 WSS
DD41D/Visitor (VS)X194171 SD
DD × D (pogo)Fot/Fot-like (DD35D)X455364 GB
Passer (PS)/DD35DX404391 GB/WSS
Tigger/DD29-36X325325 GB/Mohamed
pogoR/DD29-59DX7468 GB
Lemi/DD29D-42DX8468 GB
Mover/DD36EX207 GB
DD82E/SailorDD82E/SailorX256256 SSS
DD34E/GambolDD34E/Gambol (GB)X2919 SSS
DD35E/Hiker (HK)X178178 SSS
IS256/DxxHMULEMuDR    CH/ADDY
Rehavkus    
P element     SSS/LY
hATTcBuster/TBX609609 GZX
Ac    
Tip    
Cleaner/CNX622622 SSS
Dancer/DNX124124 SSS
Roamer/RM 261261 SSS
Kolobok     JXF
IS1380/piggyBacpiggyBac  4444 WQ/WBQ/NK
?SOLASOLA1    CX
SOLA2    CX
SOLA3    CX
IS5/PHISPHISPIF/Harbinger    LMY
ISL2EU    WJ
Spy 150150 Mohamed
Pangu    
NuwaI    
NuwaII    
CCHHCMCEnSpm/CACTA    
Mirage    CX
Chapaev    LY/SSS
Transib     CX
?Academ     YNS
IS3/IS3EUIS3EU?
Rolling circleHelitron     YNS
Self-synthesizing?Tnv     CX/LMY
Self-synthesizing?Casposons Cas1     CX

Distribution of ITM

Distribution of pogo

Distribution of the well-defined familes of hAT

制定标准

1)国家标准:沙乌头猪(GB/T 40157-2021),起草人:王宵燕、宋成义、朱慈根、潘雨来、唐慧娟、王勇、侯庆永、李平华、陈才、安亚龙、沈富林、陆雪林、徐忠惠、李何君、吴昊旻、张新生、沈东

2)团体标准:猪SINE逆转座子插入多态(RIP)分子标记遗传多样性检测技术规程(T/JASSSS 81-2023),2023-5-23发布,起草人:陈才、王宵燕、宋成义、高波、潘雨来、王勇、朱慈根
3)江苏省地方标准:沙乌头猪(DB32/T 3852-2020) ,起草人:宋成义、王宵燕、陈才、高波、朱慈根、潘雨来、王勇、唐慧娟、侯庆永、刘宗华、李平华
4)江苏省地方标准:姜曲海猪(DB32/T 1009—2006),起草人:宋成义、经荣斌、王宵燕、张金存、杨元清、王勇、侯庆永。
5)江苏省实验用小型猪:遗传质量控制,起草人: 高波、宋成义、王宵燕、陈才等。
6)江苏省地方标准:米猪,起草人: 王宵燕、宋成义、高波、陈才等。

科研项目

  1. RNA引导靶向核酸酶挖掘及其与转座酶融合的基因靶向整合技术研发,横向合作项目,2023.1-2025.1
  2. 靶向基因递送系统TnpB关联转座子挖掘、优化及安全性评估(32271508),国家自然科学基金面上项目,2023.1-2026.12
  3. 猪脂肪酸智能化快速精准表型测定技术研发(NK202211060209),国家种业振兴专项子项目,2022.6-2026.12
  4. 猪全基因组选择RIP标记挖掘、液相芯片研发及其在苏姜猪育种中应用评估(JBGS〔2021〕028),江苏省种业振兴“揭榜挂帅”项目,2022.1-2026.12
  5. 农业部国家级地方猪品种(沙乌头猪、米猪、淮猪)遗传材料采集制作专项(19190634),农业部,2019/01-2020/12
  6. 转座子介导安全高效基因编辑技术研究(2018ZX08010-08B),国家转基因生物新品种培育重大专项重点项目,2018/01-2019/12;
  7. 猪蛋白编码基因内SINE转座子插入多态位点鉴定及其对基因活性和表型的影响(31872977),国家自然科学基金面上项目,2019/01-2022/12
  8. 猪基因组中活性转座子的插入多态鉴定及重要经济性状分子标记筛选(31572364),国家自然科学基金面上项目,2016/01-2019/12
  9. 猪蛋白编码基因3”UTR区SINE转座子插入多态位点的遗传效应研究(32002146),国家自然科学基金青年基金,2021.1-2023.12
  10. 3”UTR区SINE多态对基因活性的影响(2020M671630),中国博士后科学基金面上项目,2020.7-2021.7
  11. 转座子介导斑马鱼精子插入突变体库构建及超级增强子分离鉴定(31671313),国家自然科学基金面上项目,2017/01-2020/12
  12. 转座子介导克隆及分析鸡胚早期心脏发育相关基因(31200920),国家自然科学基金青年基金项目,2013/01-2015/12
  13. 猪精子RNA的起源机制、消亡规律及其早期胚胎发育调控功能研究(31272406),国家自然科学基金面上项目,2013/01-2016/12
  14. 优质抗病苏姜猪新品种产业化及持续育种能力建设,国家发展改革委员会生物育种能力建设和产业化专项([2014]2573),2014/01-2017/12
  15. 猪基因定点敲除与RNA靶向干扰研究(2009ZX08010-019B),国家转基因生物新品种培育重点项目子项目,2009/01-2010/12
  16. 以转座子多态为基础的猪分子育种关键技术创新及应用,项目编号CX(19)2016),江苏省农业科技自主创新资金项目, 2019.07-2022.06
  17. 利用转基因技术创制梅山医用小型猪(BY2013063-03),江苏省产学研联合创新资金–前瞻性联合研究项目,2013/06-2016/12
  18. SB转座子甲基化修饰在猪基因组上促转座作用研究(201104168),中国博士后科学基金特别资助项目,2011/10-2013/12
  19. 睡美人(SB)转座子在制备转基因猪中的应用(20100480371),中国博士后科学基金项目,2010/10-2013/12。
  20. 转座子载体法建立转基因鸡输卵生物反应器技术体系(BK2007555),江苏省自然科学基金项目,2007/06-2009/12。

授权和申请专利

授权专利

  1. 一种基于比较基因组学的转座子插入多态TIP分子标记的挖掘方法,ZL201910384029.7,授权时间:2023.7.28,发明人:陈才、宋成义、王宵燕、高波、沈丹、王赛赛、王亚丽、李奎,专利权人:扬州大学
  2. 一种与猪背膘厚关联的GHR基因内SINE转座子多态分子标记检测方法及应用,专利号:ZL201910409360.X,授权时间:2022.6.14,发明人:陈才、宋成义、王宵燕、高波、沈丹、王赛赛、王亚丽、李奎,专利权人:扬州大学
  3. 一个与猪背膘厚关联的ZNF2 基因内SINE 转座子多态分子标记及其检测方法,授权专利号:ZL202010690558.2,授权公告日:2022.7.17,发明人:宋成义、顾浩、陈才、高波、王宵燕、李奎,专利权人:扬州大学
  4. 一种与猪生长速度关联的SINE转座子多态分子标记及其检测方法和应用,专利号: ZL202011057170.5,授权公告日:2022.7.12,发明人:王宵燕、迟诚林、陈才、宋成义、高波、李奎,专利权人:扬州大学
  5. 一种提高猪生长速度的连锁分子标记、其检测方法及应用,专利号:ZL202010629476.7,授权公告日:2022.7.15,发明人:王宵燕、安亚龙、陈才、宋成义、高波、李奎、陈子璇、迟诚林,专利权人:扬州大学
  6. 一种PS转座子系统及其介导的基因转移方法,授权专利号:ZL201910366530.0,授权公告日:2022.7.15,发明人:宋成义、王赛赛、高波、宗文成、沈丹、王亚丽、产舒恒、桑亚通,专利权人:扬州大学
  7. 一种基于猪SINE转座子插入多态性研发新型分子标记的方法,授权专利号:ZL201710928980.5,授权公告日:2020.7.3,发明人:宋成义、陈才、王伟、杨昆仑、张丽、沈丹、王赛赛、王宵燕、高波,专利权人:扬州大学
  8. 一种基于猪LINE1转座子插入多态性研发新型分子标记的方法,授权专利号:ZL201710928978.8,授权公告日:2020年2月14日,发明人:宋成义、陈才、王伟、杨昆仑、张丽、沈丹、王赛赛、王宵燕、高波、赵旭庭、周春宝、陶勇、倪黎纲,专利权人:扬州大学
  9. 一种基于LINE1转座子与微卫星引物相结合的猪基因组分子标记挖掘方法,授权专利号:ZL201810068583.X,授权公告日:2020年2月7日,发明人:宋成义、王伟、陈才、张丽、沈丹、王赛赛、王宵燕、高波,专利权人:扬州大学
  10. 一种基于猪ERV转座子插入多态性研发新型分子标记的方法,授权专利号:ZL201710928987.7,授权公告日:2020年6月2日,发明人:宋成义、王伟、陈才、杨昆仑、张丽、沈丹、王赛赛、王宵燕、高波,专利权人:扬州大学
  11. 一种ZB转座子系统及其介导的基因转移方法,授权专利号:ZL201510429987.3,授权公告日:2019年5月7日,发明人:高波、沈丹、宋成义、钱跃、薛松磊、王赛赛,专利权人:扬州大学
  12. 一种转基因动物的制备方法,授权专利号:ZL200810123956.5,授权公告日:2010年12月22日,发明人:宋成义、高波、谢飞、王宵燕、陈国宏、孙丽亚、赵芹、吴晗,专利权人:扬州大学
  13. 一种基因免疫方法,授权专利号:ZL200810123602.0,授权公告日:2010年8月18日,发明人:宋成义、高波、谢飞、王宵燕、陈国宏、孙丽亚、赵芹、吴晗,专利权人:扬州大学
  14. 一种苏姜猪品种的培育方法,授权专利号:ZL201010178093.9,授权公告日:2012.07.25,发明人:经荣斌、宋成义、王霄燕、张金存、胡在朝,专利权人:扬州大学

申请专利

  1. 一种Buster转座子系统及其应用,申请日:2024.6.12,申请号:2024107525095,发明人:宋成义、关中夏、高波、王冰清、石莎莎
  2. 一种Spy转座子系统及其介导的基因转移方法,申请日:2024.1.30,申请号:20241012462067,发明人:宋成义、Mohamed Diaby(中文名:莫哈迪;国籍:科特迪瓦)、高波、石莎莎、王冰清、吴晗

发表论文

Selected

  1. Zong, W., Chen, L., Zhang, D., Zhang, Y., Wang, J., Hou, X., Chai, J., An, Y., Tian, M., He, X., Song, C., He, J., Liu, X., Wang, L., D’Alessandro, E., Wang, L., Yin, Y., Li, M., Liu, D., Wang, J., … Zhang, L. (2025). Two telomere-to-telomere pig genome assemblies and pan-genome analyses provide insights into genomic structural landscape and genetic adaptations. iMeta, 4(2), e70013. https://doi.org/10.1002/imt2.70013
  2. Diaby, M., Wu, H., Gao, B., Shi, S., Wang, B., Wang, S., Wang, Y., Wu, Z., Chen, C., Wang, X., & Song, C*. (2024). A Naturally Active Spy Transposon Discovered from the Insect Genome of Colletes gigas as a Promising Novel Gene Transfer Tool. Advanced science, e2400969. https://doi.org/10.1002/advs.202400969
  3. SONG, C. and IVICS, Z. (2024). Transposable Elements as Tools. In Transposable Elements and Genome Evolution (eds A. Hua-Van and P. Capy). https://doi.org/10.1002/9781394312467.ch10
  4. Saisai Wang, Bo Gao, Csaba Miskey, Zhongxia Guan, Yatong Sang, Cai Chen, Xiaoyan Wang, Zoltán Ivics, Chengyi Song*, Passer, a highly active transposon from a fish genome, as a potential new robust genetic manipulation tool, Nucleic Acids Research, 2023;, gkad005, https://doi.org/10.1093/nar/gkad005
  5. Dan Shen, Chengyi Song, Csaba Miskey, Shuheng Chan, Zhongxia Guan, Yatong Sang, Yali Wang, Cai Chen, Xiaoyan Wang, Ferenc Müller, Zoltán Ivics, Bo Gao* , A native, highly active Tc1/mariner transposon from zebrafish (ZB) offers an efficient genetic manipulation tool for vertebrates, Nucleic Acids Research, 2021 Feb 26;49(4):2126-2140. https://doi.org/10.1093/nar/gkab045.
  6. Shasha Shi, Mikhail V. Puzakov, Ludmila V. Puzakova, Yulia N. Ulupova, Kuilin Xiang, Binqing Wang, Bo Gao, Chengyi Song*,  Hiker, a new family of DNA transposons encoding transposases with DD35E motifs, displays a distinct phylogenetic relationship with most known DNA transposon families of IS630-Tc1-mariner (ITm),  Molecular Phylogenetics and Evolution, 2023 Aug 14:107906. https://doi.org/10.1016/j.ympev.2023.107906.
  7. Shasha Shi, Mikhail Puzakov, Zhongxia Guan, Kuilin Xiang, Mohamed Diaby, Yali Wang, Saisai Wang, Chengyi Song, and Bo Gao*. 2021. Prokaryotic and Eukaryotic Horizontal Transfer of Sailor (DD82E), a New Superfamily of IS630-Tc1-Mariner DNA Transposons. Biology 10, no. 10: 1005. https://doi.org/10.3390/biology10101005
  8. Wang X, Chen Z, Murani E, D’Alessandro E, An Y, Chen C, Li K, Galeano G, Wimmers K, Song C*. A 192 bp ERV fragment insertion in the first intron of porcine TLR6 may act as an enhancer associated with the increased expressions of TLR6 and TLR1. Mobile DNA. 2021 Aug 18;12(1):20. https://doi.org/10.1186/s13100-021-00248-w.
  9. Naisu Yang, Bohao Zhao, Yang Chen, Enrico D’Alessandro, Cai Chen, Ting Ji, Xinsheng Wu, Chengyi Song*, Distinct Retrotransposon Evolution Profile in the Genome of Rabbit (Oryctolagus cuniculus), Genome Biology and Evolution, Volume 13, Issue 8, August 2021, evab168, https://doi.org/10.1093/gbe/evab168
  10. Cai Chen, Enrico D’Alessandro, Eduard Murani, Yao Zheng, Domenico Giosa, Naisu Yang, Xiaoyan Wang, Bo Gao, Kui Li, Klaus Wimmers & Chengyi Song*. SINE jumping contributes to large-scale polymorphisms in the pig genomes. Mobile DNA, 2021 Jun 28;12(1):17. https://doi.org/10.1186/s13100-021-00246-y.
  11. Wencheng Zong, Runze Zhao, Xiaoyan Wang, Chenyu Zhou, Jinbu Wang, Cai Chen, Naiqi Niu, Yao Zheng, Li Chen, Xin Liu, Xinhua Hou, Fuping Zhao, Ligang Wang, Lixian Wang, Chengyi Song, Longchao Zhang*, Population genetic analysis based on the polymorphisms mediated by transposons in the genomes of pig, DNA Research, 2024;, dsae008, https://doi.org/10.1093/dnares/dsae008

2025

  1. Zong, W., Chen, L., Zhang, D., Zhang, Y., Wang, J., Hou, X., Chai, J., An, Y., Tian, M., He, X., Song, C., He, J., Liu, X., Wang, L., D’Alessandro, E., Wang, L., Yin, Y., Li, M., Liu, D., Wang, J., … Zhang, L. (2025). Two telomere-to-telomere pig genome assemblies and pan-genome analyses provide insights into genomic structural landscape and genetic adaptations. iMeta, 4(2), e70013. https://doi.org/10.1002/imt2.70013
  2. Cai Chen, Mengli Wang, Yao Zheng, Ziyan Liu, Phiri Azele, Ahmed A. Saleh, Xiaoyan Wang & Chengyi Song. A 280 bp SINE insertion within the pig PLA2G16 could potentially modify gene expression through integration with its transcript. J Appl Genetics (2025). https://doi.org/10.1007/s13353-024-00933-5
  3. Saleh, A. A., Moawad, A. S., Yang, N., Zheng, Y., Chen, C., Wang, X., Gao, B., & Song, C. (2025). Association of a 7.9 kb Endogenous Retrovirus Insertion in Intron 1 of CD36 with Obesity and Fat Measurements in Sheep. Mobile DNA, 16(1), 12. https://doi.org/10.1186/s13100-025-00349-w
  4. Wang Xiaoyan , Zhou Chenyu , Zheng Yao , Yu Miao , He Jia , Chen Cai , Qiao Suwei , Moawad Ali Shoaib , Tian Guoxing , Li Bixia , Song Chengyi. Population structure and genetic diversity of Mi pigs based on SINE-RIPs, Frontiers in Veterinary Science, Volume 12 – 2025, https://doi.org/10.3389/fvets.2025.1500115

2024

  1. SONG, C. and IVICS, Z. (2024). Transposable Elements as Tools. In Transposable Elements and Genome Evolution (eds A. Hua-Van and P. Capy). https://doi.org/10.1002/9781394312467.ch10
  2. Diaby, M., Wu, H., Gao, B., Shi, S., Wang, B., Wang, S., Wang, Y., Wu, Z., Chen, C., Wang, X., & Song, C*. (2024). A Naturally Active Spy Transposon Discovered from the Insect Genome of Colletes gigas as a Promising Novel Gene Transfer Tool. Advanced science, e2400969. https://doi.org/10.1002/advs.202400969
  3. Wencheng Zong, Runze Zhao, Xiaoyan Wang, Chenyu Zhou, Jinbu Wang, Cai Chen, Naiqi Niu, Yao Zheng, Li Chen, Xin Liu, Xinhua Hou, Fuping Zhao, Ligang Wang, Lixian Wang*, Chengyi Song*, Longchao Zhang*, Population genetic analysis based on the polymorphisms mediated by transposons in the genomes of pig, DNA Research, 2024;, dsae008, https://doi.org/10.1093/dnares/dsae008
  4. Moawad, Ali Shoaib, Fengxu Wang, Yao Zheng, Cai Chen, Ahmed A. Saleh, Jian Hou, and Chengyi Song*. 2024. Evolution of Endogenous Retroviruses in the Subfamily of Caprinae. Viruses 16, no. 3: 398. https://doi.org/10.3390/v16030398
  5. Guo, Mengke, George A. Addy, Naisu Yang, Emmanuel Asare, Han Wu, Ahmed A. Saleh, Shasha Shi, Bo Gao, and Chengyi Song*. 2024. PiggyBac Transposon Mining in the Small Genomes of Animals. Biology 13, no. 1: 24. https://doi.org/10.3390/biology13010024
  6. Saisai Wang, Zhongxia Guan, Mohamed Diaby, Emmanuel Asare, Numan Ullah, Wenzhu Jia, Bo Gao, Duonan Yu, Chengyi Song*, Evolution of Skipper (SK), a family of DD34E/Tc1 transposons, in animals, Biological Journal of the Linnean Society, 2023;, blad141, https://doi.org/10.1093/biolinnean/blad141.
  7. Du, Zhanyu, Cai Chen, Yao Zheng, Xiaoyan Wang, and Chengyi Song. 2024. Retroviral Insertion Polymorphism (RIP) of Porcine Endogenous Retroviruses (PERVs) in Pig Genomes. Animals 14, no. 4: 621. https://doi.org/10.3390/ani14040621
  8. 5) Wang, Bingqing, Ahmed A. Saleh, Naisu Yang, Emmanuel Asare, Hong Chen, Quan Wang, Cai Chen, Chengyi Song, and Bo Gao*. 2024. High Diversity of Long Terminal Repeat Retrotransposons in Compact Vertebrate Genomes: Insights from Genomes of Tetraodontiformes. Animals 14, no. 10: 1425. https://doi.org/10.3390/ani14101425
  9. Book: Livestock Genome Editing Tools, 3. Associated technologies for genome editing, 2024, ISBN: 978-0-12-819099-9 https://doi.org/10.1016/C2018-0-04416-3
  10. Moawad, Ali Shoaib, Fengxu Wang, Yao Zheng, Cai Chen, Ahmed A. Saleh, Jian Hou, and Chengyi Song*. 2024. Evolution of Endogenous Retroviruses in the Subfamily of Caprinae. Viruses 16, no. 3: 398. https://doi.org/10.3390/v16030398
  11. Chen, Cai, Zhanyu Du, Yao Zheng, Hong Chen, Ahmed A. Saleh, Naisu Yang, Mengli Wang, Phiri Azele, Xiaoyan Wang, and Chengyi Song*. 2024. Investigation of Polymorphisms Induced by the Solo Long Terminal Repeats (Solo-LTRs) in Porcine Endogenous Retroviruses (ERVs). Viruses 16, no. 11: 1801. https://doi.org/10.3390/v16111801

2023

  1. Saisai Wang, Bo Gao, Csaba Miskey, Zhongxia Guan, Yatong Sang, Cai Chen, Xiaoyan Wang, Zoltán Ivics, Chengyi Song*, Passer, a highly active transposon from a fish genome, as a potential new robust genetic manipulation tool, Nucleic Acids Research, 2023;, gkad005, https://doi.org/10.1093/nar/gkad005
  2. Hao Gu, Zhan-yu Du, Eduard Murani, Enrico D’Alessandro, Cai Chen, Xiao-yan Wang, Jiu-de Mao, Klaus Wimmers, Chengyi Song*, A 314-bp SINE insertion in the ZNF2 promoter region may act as a repressor related to regulation of fat deposition in pigs, Journal of Integrative Agriculture, Volume 22, Issue 2, 2023, Pages 526-536, ISSN 2095-3119, https://doi.org/10.1016/j.jia.2022.08.128.
  3. Li, Xueyuan, Zhongxia Guan, Feng Wang, Yali Wang, Emmanuel Asare, Shasha Shi, Zheguang Lin, Ting Ji, Bo Gao, and Chengyi Song*. 2023. Evolution of piggyBac Transposons in Apoidea. Insects 14, no. 4: 402. https://doi.org/10.3390/insects14040402
  4. Wang, Yali, Mengke Guo, Naisu Yang, Zhongxia Guan, Han Wu, Numan Ullah, Emmanuel Asare, Shasha Shi, Bo Gao, and Chengyi Song*. 2023. Phylogenetic Relationships among TnpB-Containing Mobile Elements in Six Bacterial Species. Genes 14, no. 2: 523. https://doi.org/10.3390/genes14020523
  5. Zheng, Yao, Cai Chen, Mengli Wang, Ali Shoaib Moawad, Xiaoyan Wang, and Chengyi Song*. 2023. SINE Insertion in the Pig Carbonic Anhydrase 5B (CA5B) Gene Is Associated with Changes in Gene Expression and Phenotypic Variation. Animals 13, no. 12: 1942. https://doi.org/10.3390/ani13121942
  6. Xiang, Kuilin, Mikhail Puzakov, Shasha Shi, Mohamed Diaby, Numan Ullah, Bo Gao, and Chengyi Song*. 2023. Mosquito (MS), a DD37E Family of Tc1/Mariner, Displaying a Distinct Evolution Profile from DD37E/TRT and DD37E/L18. Genes 14, no. 7: 1379. https://doi.org/10.3390/genes14071379
  7. Shasha Shi, Mikhail V. Puzakov, Ludmila V. Puzakova, Yulia N. Ulupova, Kuilin Xiang, Binqing Wang, Bo Gao, Chengyi Song*Hiker, a new family of DNA transposons encoding transposases with DD35E motifs, displays a distinct phylogenetic relationship with most known DNA transposon families of IS630-Tc1-mariner (ITm),  Molecular Phylogenetics and Evolution, 2023 Aug 14:107906. https://doi.org/10.1016/j.ympev.2023.107906.
  8. Ullah, Numan, Naisu Yang, Zhongxia Guan, Kuilin Xiang, Yali Wang, Mohamed Diaby, Cai Chen, Bo Gao, and Chengyi Song*. Comparative Analysis and Phylogenetic Insights of Cas14-Homology Proteins in Bacteria and Archaea. Genes. 2023; 14(10):1911. https://doi.org/10.3390/genes14101911.
  9. He, Jia, Miao Yu, Chenglin Chi, Zhanyu Du, Yao Zheng, Cai Chen, Ali Shoaib Moawad, Chengyi Song, and Xiaoyan Wang*. 2023. Insertion of 643bp Retrotransposon Upstream of PPARγ CDS Is Associated with Backfat of Large White Pigs. Animals 13, no. http://14: 2355. https://doi.org/10.3390/ani13142355

2022

  1. Jia, Wenzhu, Emmanuel Asare, Tao Liu, Pingjing Zhang, Yali Wang, Saisai Wang, Dan Shen, Csaba Miskey, Bo Gao, Zoltán Ivics, Qijun Qian, and Chengyi Song*. 2022. Horizontal Transfer and Evolutionary Profiles of Two Tc1/DD34E Transposons (ZB and SB) in Vertebrates. Genes 13, no. 12: 2239. https://doi.org/10.3390/genes13122239
  2. Chi, Chenglin, Jia He, Zhanyu Du, Yao Zheng, Enrico D’Alessandro, Cai Chen, Ali Shoaib Moawad, Emmanuel Asare, Chengyi Song, and Xiaoyan Wang*. 2022. Two Retrotransposon Elements in Intron of Porcine BMPR1B Is Associated with Phenotypic Variation. Life 12, no. 10: 1650. https://doi.org/10.3390/life12101650
  3. Wang, Xiaoyan, Chengling Chi, Jia He, Zhanyu Du, Yao Zheng, Enrico D’Alessandro, Cai Chen, Ali Shoaib Moawad, Emmanuel Asare, and Chengyi Song*. 2022. SINE Insertion May Act as a Repressor to Affect the Expression of Pig LEPROT and Growth Traits. Genes 13, no. 8: 1422. https://doi.org/10.3390/genes13081422.
  4. Du, Zhanyu, Enrico D’Alessandro, Emmanuel Asare, Yao Zheng, Mengli Wang, Cai Chen, Xiaoyan Wang, and Chengyi Song*. 2022. Retrotransposon Insertion Polymorphisms (RIPs) in Pig Reproductive Candidate Genes. Genes 13, no. 8: 1359. https://doi.org/10.3390/genes13081359
  5. Mohamed Diaby, Zhongxia Guan, Shasha Shi, Yatong Sang, Saisai Wang, Yali Wang, Wencheng Zong, Numan Ullah, Bo Gao, and Chengyi Song*. 2022. Revisiting the Tigger Transposon Evolution Revealing Extensive Involvement in the Shaping of Mammal Genomes. Biology 11, no. 6: 921. https://doi.org/10.3390/biology11060921.
  6. Jia, Wenzhu, Zhongxia Guan, ShaSha Shi, Kuilin Xiang, Peihong Chen, Fen Tan, Numan Ullah, Mohamed Diaby, Mengke Guo, Chengyi Song, and Bo Gao*. 2022. The Annotation of Zebrafish Enhancer Trap Lines Generated with PB Transposon. Current Issues in Molecular Biology 44, no. 6: 2614-2621. https://doi.org/10.3390/cimb44060178.
  7. Zhongxia Guan, Shasha Shi, Mohamed Diaby, Patrick Danley, Numan Ullah, Mikhail Puzakov, Bo Gao, Chengyi Song*, Horizontal transfer of Buster transposons across multiple phyla and classes of animals, Molecular Phylogenetics and Evolution, 2022, 173:107506, https://doi.org/10.1016/j.ympev.2022.107506.
  8. Wang, Xiaoyan, Enrico D’Alessandro, Chenglin Chi, Ali S. Moawad, Wencheng Zong, Cai Chen, and Chengyi Song*. Genetic Evaluation and Population Structure of Jiangsu Native Pigs in China Revealed by SINE Insertion Polymorphisms. Animals, 2022, 12, no. 11: 1345. https://doi.org/10.3390/ani12111345.
  9. Zhanyu Du, Enrico D’Alessandro, Yao Zheng, Mengli Wang, Cai Chen, Xiaoyan Wang, Chengyi Song*. Retrotransposon insertion polymorphisms (RIPs) in pig coat color candidate genes. Animals, 2022, 12, no. 8: 969. https://doi.org/10.3390/ani12080969.

2021

  1. Shasha Shi, Mikhail Puzakov, Zhongxia Guan, Kuilin Xiang, Mohamed Diaby, Yali Wang, Saisai Wang, Chengyi Song, and Bo Gao*. 2021. Prokaryotic and Eukaryotic Horizontal Transfer of Sailor (DD82E), a New Superfamily of IS630-Tc1-Mariner DNA Transposons. Biology 10, no. 10: 1005. https://doi.org/10.3390/biology10101005
  2. Liu, Yibing, Wencheng Zong, Mohamed Diaby, Zheguang Lin, Saisai Wang, Bo Gao, Ting Ji, and Chengyi Song*. 2021. Diversity and Evolution of pogo and Tc1/mariner Transposons in the Apoidea Genomes. Biology 10, no. 9: 940. https://doi.org/10.3390/biology10090940
  3. Yali Wang, Dan Shen, Numan Ullah, Mohamed Diaby, Bo Gao, Chengyi Song*. Characterization and expression pattern of ZB and PS transposons in zebrafish. Gene Expr Patterns. 2021 Sep 1;42:119203. https://doi.org/10.1016/j.gep.2021.119203.
  4. Wang X, Chen Z, Murani E, D’Alessandro E, An Y, Chen C, Li K, Galeano G, Wimmers K, Song C*. A 192 bp ERV fragment insertion in the first intron of porcine TLR6 may act as an enhancer associated with the increased expressions of TLR6 and TLR1. Mobile DNA. 2021 Aug 18;12(1):20. https://doi.org/10.1186/s13100-021-00248-w.
  5. Naisu Yang, Bohao Zhao, Yang Chen, Enrico D’Alessandro, Cai Chen, Ting Ji, Xinsheng Wu, Chengyi Song*, Distinct Retrotransposon Evolution Profile in the Genome of Rabbit (Oryctolagus cuniculus), Genome Biology and Evolution, Volume 13, Issue 8, August 2021, evab168, https://doi.org/10.1093/gbe/evab168
  6. Cai Chen, Enrico D’Alessandro, Eduard Murani, Yao Zheng, Domenico Giosa, Naisu Yang, Xiaoyan Wang, Bo Gao, Kui Li, Klaus Wimmers & Chengyi Song*. SINE jumping contributes to large-scale polymorphisms in the pig genomes. Mobile DNA, 2021 Jun 28;12(1):17. https://doi.org/10.1186/s13100-021-00246-y.
  7. Chen, Cai, Yao Zheng, Mengli Wang, Eduard Murani, Enrico D’Alessandro, Ali S. Moawad, Xiaoyan Wang, Klaus Wimmers, and Chengyi Song* . SINE Insertion in the Intron of Pig GHR May Decrease Its Expression by Acting as a Repressor. Animals. 2021 Jun 23;11(7):1871. https://doi.org/10.3390/ani11071871.
  8. Chen, Cai, Xiaoyan Wang, Wencheng Zong, Enrico D’Alessandro, Domenico Giosa, Yafen Guo, Jiude Mao, and Chengyi Song* . Genetic Diversity and Population Structures in Chinese Miniature Pigs Revealed by SINE Retrotransposon Insertion Polymorphisms, a New Type of Genetic Markers. Animals. 2021 Apr 15;11(4):1136. https://doi.org/10.3390/ani11041136.
  9. Saisai Wang, Mohamed Diaby, Mikhail Puzakov, Numan Ullah, Yali Wang, Patrick Danley, Cai Chen, Xiaoyan Wang, Bo Gao, Chengyi Song*, Divergent evolution profiles of DD37D and DD39D families of Tc1/mariner transposons in eukaryotes, Molecular Phylogenetics and Evolution, 2021 Mar 10:107143. https://doi.org/10.1016/j.ympev.2021.107143.
  10. Dan Shen, Chengyi Song, Csaba Miskey, Shuheng Chan, Zhongxia Guan, Yatong Sang, Yali Wang, Cai Chen, Xiaoyan Wang, Ferenc Müller, Zoltán Ivics, Bo Gao* , A native, highly active Tc1/mariner transposon from zebrafish (ZB) offers an efficient genetic manipulation tool for vertebrates, Nucleic Acids Research, 2021 Feb 26;49(4):2126-2140. https://doi.org/10.1093/nar/gkab045.

2020

  1. Bo Gao; Wencheng Zong; Csaba Miskey; Numan Ullah; Mohamed Diaby; Cai Chen; Xiaoyan Wang; Zoltán Ivics; Chengyi Song*Intruder (DD38E), a recently evolved sibling family of DD34E/Tc1 transposons in animals. Mobile DNA, 2020 Dec 10;11(1):32. https://doi.org/10.1186/s13100-020-00227-7
  2. Bo Gao, Yali Wang, Mohamed Diaby, Wenchen Zong, Dan Shen, Saisai Wang, Cai Chen, Xiaoyan Wang, Chengyi Song*. Evolution of pogo, a separate superfamily of IS630-Tc1-mariner transposons, revealing recurrent domestication events in vertebrates. Mobile DNA, 2020 Jul 22;11:25. https://doi.org/10.1186/s13100-020-00220-0
  3. Bo Gao, Yatong Sang, Wencheng Zong, Mohamed Diaby, Dan Shen, Saisai Wang, Yali Wang, Cai Chen, Chengyi Song*. Evolution and Domestication of Tc1/mariner transposons in the African coelacanth (Latimeria chalumnae) genome. Genome, 2020 Aug;63(8):375-386. https://doi.org/10.1139/gen-2019-0216.
  4. Dan Shen, Bo Gao, Csaba Miskey, Cai Chen, Yatong Sang, Wencheng Zong, Saisai Wang, Yali Wang, Xiaoyan Wang, Zoltán Ivics, Chengyi Song*, Multiple Invasions of Visitor, a DD41D Family of Tc1/mariner Transposons, throughout the Evolution of Vertebrates, Genome Biology and Evolution, 2020 Jul 1;12(7):1060-1073. https://doi.org/10.1093/gbe/evaa135
  5. Wencheng Zong, Bo Gao, Mohamed Diaby, Dan Shen, Saisai Wang, Yali Wang, Yatong Sang, Cai Chen, Xiaoyan Wang, Chengyi Song*. Traveler, a New DD35E Family of Tc1/Mariner Transposons, Invaded Vertebrates Very Recently. Genome Biology and Evolution, 2020 Mar 1;12(3):66-76. https://doi.org/10.1093/gbe/evaa034

2019 and before

  1. Yatong Sang, Bo Gao, Mohamed Diaby, Wencheng Zong, Cai Chen, Dan Shen, Saisai Wang, Yali Wang, Zoltán Ivics & Chengyi Song*. Incomer, a DD36E family of Tc1/mariner transposons newly discovered in animals. Mobile DNA, 2019 Nov 23;10:45. https://doi.org/10.1186/s13100-019-0188-x.
  2. S. Wang, Y. Wang, D. Shen, L. Zhang, W. Chen, S. Chan, Z. Guan, C. Song & B. Gao*. ZB transposon and chicken vasa homologue (Cvh) promoter interact to increase transfection efficiency of primordial germ cells in vivo, British Poultry Science, 2019 Dec;60(6):724-728.  https://doi.org/10.1080/00071668.2019.1639138.
  3. Cai Chen, Wei Wang, Xiaoyan Wang, Dan Shen, Saisai Wang, Yali Wang, Bo Gao, Klaus Wimmers, Jiude Mao, Kui Li & Chengyi Song*. Retrotransposons evolution and impact on lncRNA and protein coding genes in pigs. Mobile DNA. 2019 May 6;10:19. https://doi.org/10.1186/s13100-019-0161-8.     
  4. Dan Shen, Songlei Xue, Shuheng Chan, Yatong Sang, Saisai Wang, Yali Wang, Cai Chen, Bo Gao, Ferenc Mueller, Chengyi Song*. Enhancer Trapping and Annotation in Zebrafish Mediated with Sleeping Beauty, piggyBac and Tol2 Transposons. Genes. 2018 Dec 13;9(12):630. https://doi.org/10.3390/genes9120630.
  5. Bo Gao, Saisai Wang, Yali Wang, Dan Shen, Songlei Xue, Cai Chen, Hengmi Cui & Chengyi Song*. Low diversity, activity, and density of transposable elements in five avian genomes. Functional & Integrative Genomics. 2017 Jul;17(4):427-439. https://doi.org/10.1007/s10142-017-0545-0
  6. Bo Gao; Dan Shen; Songlei Xue; Cai Chen; Hengmi Cui; Chengyi Song*. The contribution of transposable elements to size variations between four teleost genomes, Mobile DNA. 2016 Feb 9;7:4. https://doi.org/10.1186/s13100-016-0059-7.
  7. 桑亚通,沈丹,陈伟,产舒恒,顾浩,高波,宋成义*,Tol2转座子介导斑马鱼rps26基因附近增强子捕获及注解分析,生物工程学报,2018,34(3):449-458
  8. 沈丹,陈才,王赛赛,陈伟,高波,宋成义*,Tc1_Mariner转座子超家族的研究进展,遗传,2017, 39(1):1-13
  9. 谢飞,高波,宋成义*,陈国宏,“睡美人”转座子的研究进展,遗传,2007,29(7):785-792

研究方向

基因组转座子挖掘及其应用

主要开展转座子介导基因传递技术、基因编辑技术、分子标记技术研发及其应用研究,研究方向包括:(1)转座子进化、活性DNA转座子挖掘及高效基因传递工具开发; (2)转座子起源小分子靶向核酸酶挖掘及基因编辑工具开发;(3)大片段DNA定点整合技术研发;(4)逆转座子插入多态RIP分子标记规模挖掘及配套芯片研发。研究主要使用大肠杆菌、 哺乳动物细胞、酵母细胞、斑马鱼、小鼠和猪模型生物等。

1. 转座子进化及其生物学意义

转座子的转座特性使其能够水平传播,颠覆了人们对生命演化过程中关于遗传物质垂直传播的传统认识。这一特征使遗传物质能够在不同的物种、界和域之间发生水平转移。解析转座子的起源、分类、横向传播、驯化(蛋白编码基因驯化)和适应(基因拼接元件和表达调控调节元件,如增强子、启动子、lncRNA等)等进化规律,揭示转座对重塑功能基因基因组、转录组和表观组中的作用,对理解转座子在功能基因演化、基因组进化、表型变异和物种分化中的生物学功能有重要意义。

2. 活性转座子挖掘及高效基因传递工具开发

转座子的转座特性使其具有介导大片段DNA转移的能力,挖掘活性转座子,进行高效基因传递工具开发和工程化优化,在人类基因治疗和转基因生物育种中有广泛应用前景。

Fig.1. Structure of cut-and-paste transposons and their transposition mechanism. (A) The transposon is a mobile genetic element containing a transposase coding sequence (green box) flanked by terminal inverted repeats (TIRs; orange arrows on the left and right). (B) The transposase (green spheres) binds to its sites within the transposon TIRs (orange boxes). Excision takes place in a synaptic complex, and separates the transposon from the donor DNA (gray box). The excised element integrates into a target site in the target DNA (yellow box). This process generates target site duplications (TSDs, black boxes) which flank the newly integrated transposon. Most cut-and-paste transposons generate a transposon excision footprint in the donor DNA.

Fig.2. Experimental pipeline for the development of genetic tools based on active DNA transposons.

3. 转座子起源小分子靶向核酸酶挖掘及基因编辑工具开发

目前基因编辑中广泛应用的Cas9和Cas12a(Cpf1)核酸酶分子比较大(1200-1400 aa),给系统遗传改造、基因包装和细胞传递带来诸多不便,且基因编辑效率还不高,存在脱靶现象,严重制约了CRISPR/Cas技术在基因治疗、生物育种等领域的应用。

TnpB 是一种与转座子相关的小分子靶向核酸酶,研究表明三类转座子(IS605, IS607, IS1341)含有TnpB。它是 RNA引导的核酸酶,在细菌和古菌中广泛存在。近年来,TnpB 因其与 CRISPR-Cas 系统的相似性而受到关注,被认为是 CRISPR-Cas 系统的进化前体之一。TnpB能够加工自身的mRNA以产生引导RNA。这些引导RNA是短RNA分子,能够将TnpB核酸酶引导到特定的DNA序列。加工过程涉及对mRNA的切割,生成引导RNA,随后引导RNA用于将核酸酶活性定位到基因组中的正确位置

小分子靶向核酸酶具有许多优点,如易于合成、稳定性高,便于遗传修饰和细胞传递等。通过对原核生物基因组大数据挖掘转座子起源的小分子核酸酶,并利用人工智能(AI)等技术,进行定向进化、分子重构,研发基因编辑效率高、靶向特异性强的新型基因编辑工具,能够为人类基因治疗和转基因生物育种提供更加安全高效的编辑系统。

4. 大片段DNA定点整合技术研发

逆转录转录病毒和DNA转座子作为基因传递系统已经有大量的研究报道。然而逆转录病毒依靠内源性逆转录酶活性以及通过复制粘贴机制进行转座。 且由于涉及RNA中间体和逆转录,逆转录病毒介导的转基因可能不稳定。另外,逆转录病毒载体制备和储存比较复杂、载体容量有限、生物安全要求高、成本高昂。

相比之下,DNA转座子利用简单的“剪切粘贴”机制,其介导的基因传递相对简单且转基因片段更加稳定。科学家已经成功挖掘并改造了多种DNA转座子(如ZB、PS、SB和piggyBac),作为高效的基因传递载体,用于基因治疗,转基因和突变体制备。与逆转录病毒载体相比,DNA转座子作为基因治疗传递载体具有成本低廉、载体容量大、整合稳定、易于操作,受免疫系统沉默的影响小等优点。

然而,由于在基因组上的随机整合,目前基于DNA转座子载体(包括逆转录病毒载体)传递系统的基因治疗技术仍然存在一些潜在风险,如随机整合导致基因突变,致癌基因的激活或肿瘤抑制基因的失活等,这些可能会导致肿瘤的形成,这种现象被称为插入突变,以上风险是目前逆转录病毒载体和DNA转座子载体在基因治疗中主要安全性关切和挑战。

因此,靶向转座DNA转座子挖掘,并利用人工智能(AI)等技术的后续工程化改造,开发高效的基因定点转移技术,可以大大降低由随机整合引起的风险,显著提高DNA转座子介导基因治疗的安全性。

另外,通过转座酶和小分子靶向核酸酶融合,构建大片段DNA定点整合技术也是实验室重点攻关方向。

5. 基于活性转座子插入多态为基础的分子标记研发及其在动物遗传育种研究中的应用

由于转座子能在物种间和物种内转移,因此,像其它的突变源一样,能够产生丰富的基因组结构变异,转座产生的结构变异也称为转座子插入多态。转座子是很多模式动物基因组主要成份,占斑马鱼基因组55%左右,蛙类基因组35%左右,家蚕基因组45%左右,逆转录转座子(Retrotransposon)占哺乳动物基因组30-50% ,占家猪基因组40%左右,是哺乳动物基因组主要成分,主要分为长散在重复序列(LINEs)、短散在重复序列(SINEs)和长末端重复序列(LTRs,含内源性逆转录病毒,ERVs)三种类型。

由于转座子插入片段大(一般100 bp以上),且大多含有功能元件(启动子、增强子等),转座产生的结构变异产生的遗传效应普遍比SNP更强。转座插入能够通过导入调控元件、改变基因拼接方式、改变表观调控等方式引起基因功能和活性改变,从而引起表型变异。另外,由于转座产生的结构变异是由内源性转座酶介导,而SNP是自然突变,其突变率(2.5×10−2)比SNP(1.0-1.8×10–8)高。

转座子的转座不仅促进了物种间基因组的分化,而且还产生了物种内丰富的遗传多样性,对物种、品种、亚种、品系和新性状形成发挥了重要作用。因此,转座子插入形成的多态是重要的新型分子标记,其在遗传进化研究中的应用为我们理解高等生物基因组的进化提供了全新视角,同时,转座子插入多态分子标记技术也成为生物多样性、遗传进化和分子育种研究的重要工具。

与传统SNP标记相比,转座子插入多态分子标记具有突变率高、稳定性好、数量大、分布范围广、遗传效应大、检测手段简单快速和开发成本低等特点。因此,基于基因组上转座子插入多态的分子标记规模挖掘及其配套芯片研发在QTL精细定位、全基因组选择等遗传育种研究中具有更高的应用价值。

猪等家畜基因组中50%以上的结构变异由逆转座子介导产生(也称为逆转座子插入多态RIP,Retrotransposon Insertion Polymorphism),特别SINE逆转座子(家畜基因组上分布最广泛,多态最丰富的一类转座子)产生的RIP标记最具开发潜力。

研究人员

转座子实验室主要研究方向为基因组转座子挖掘及其应用,主要开展转座子介导基因传递技术、基因编辑技术、分子标记技术研发其应用研究,包括:(1)转座子进化、活性DNA转座子挖掘及高效基因传递工具开发; (2)转座子起源小分子靶向核酸酶挖掘及基因编辑工具开发;(3)大片段DNA定点整合技术研发;(4)逆转座子插入多态RIP分子标记规模挖掘及配套芯片研发。研究主要使用大肠杆菌(E.Coli)、 哺乳动物细胞、酵母细胞、斑马鱼、小鼠和猪模型生物等。实验室现有教授2人,副教授1人,助理研究员1人,博士后1人,博硕士研究生20余人。    

宋成义,博士、教授,博士研究生导师

研究兴趣:转座组与基因组共进化、转座子介导基因转移、基因编辑、分子标记技术研发其应用研究。

1.学习经历  
1993-1997攻读学士学位(畜牧专业)江苏农学院
1997-2000攻读硕士学位(动物遗传育种与繁殖专业)扬州大学
2006-2010攻读博士学位(动物遗传育种与繁殖专业)扬州大学
2.工作简历  
2014.08-至今扬州大学教授
2018.02-2018.05德国Leibniz家畜研究所基因组研究所 Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Rostock, Germany访问学者
2014.09-2015.09英国伯明翰大学肿瘤和基因组研究所 Institute of Cancer and Genomic Sciences University of Birmingham, Birmingham, UK博士后
2010.08-2014.08中国农业科学院北京畜牧兽医研究所博士后
2008.08-2014.07扬州大学副教授
2006.09-2007.09德国卡尔斯鲁厄理工学院遗传病毒所 (原卡尔斯鲁厄研究中心) Institute of Toxicology and Genetics Karlsruhe Institute of Technology (Formerly Forschungszentrum Karlsruhe), Karlsruhe, Germany访问学者
2002.08-2008.07扬州大学讲师
2000.07-2002.07扬州大学助教

扬州大学教师个人主页服务平台 宋成义–中文主页–首页 (yzu.edu.cn)

ORCID: https://orcid.org/0000-0002-0488-4718

高波,博士,教授,博士研究生导师

主要从事基因组一类逆转座子 (Retrotransposon)、二类(DNA transposon)转座子,靶向转座子系统和基因编辑系统挖掘及其在转基因和基因治疗研究中的应用研究。

ORCID: Bo Gao (0000-0002-4029-1258) (orcid.org)

王宵燕、博士、副教授、硕士研究生导师

研究方向:1、猪的重要经济性状遗传机理解析;2、猪的常规育种与分子育种;3、猪遗传资源评价与保护;4、猪健康养殖。

ORCID: 0000-0001-8521-2974

陈才、博士、助理研究员、硕士研究生导师

主要研究方向和兴趣:1、基于活性转座子插入多态为基础的分子标记研发及其在动物遗传育种研究中的应用;2、动物转座组和基因组共进化研究(包括转座子分布、适应、驯化、横向传播及其对基因和基因组进化的影响)。 

扬州大学教师个人主页服务平台 陈才–中文主页–首页 (yzu.edu.cn)

王赛赛、博士后、助理研究员

主要研究方向和兴趣:活性转座子的研发,主要通过生物信息学的方法挖掘自主活性的DNA转座子,并研究该转座系统的活性及转座特性;转座子技术在转基因和动物功能基因学上的应用研究。

2013年河北科技师范学院动物科学专业毕业;
2015年扬州大学养殖专业硕士毕业;
2021年扬州大学动物遗传育种与繁殖专业博士毕业;

Ahmed Abdelkader Saleh 博士后

Education: Graduated from Alexandria University, Egypt. Majoring in Biological Science. Postgraduate studies in Animal Genetics and Breeding, Alexandria University, Egypt. Obtained an MSc degree in Molecular Markers from Alexandria University and City of Scientific Research & Technology Applications, Egypt. Ph.D. degree in Animal Genetics and Breeding, Southwest University (SWU), China. Postdoctoral research in Animal Genetics, Alexandria University, Egypt. MSc in Human Development, Diplomatic Training Centre, Egypt. BMA in Business Administration, Egyptian Cultural Centre, Egypt.
Research direction & Interest: Previously focused on animal genetics and breeding especially ”farm animals”. Areas of scientific interest include; candidate genes also their association with production and reproductive traits, MAS, signatures of selection, QTL, GWAS, GEBV, besides, the biodiversity of AnGR. Current research interests have a strong emphasis on Bioinformatics, DNA & RNA transposons mainly in animal genomes and their applications as genetic tools. Our research includes animal genome transposon identifications, classification, and evolution. Also, we mining for highly active transposons and testing their activities in human cells.
Positions: Serves as a faculty member (Assistant Professor) at the lab of animal Genetics and Breeding, Alexandria University, Egypt. Serves as an Arbitrator in the International Arbitration Organization. Consultant Trainer at Diplomatic Training Centre. Researcher at the City of Scientific Research and Technology Applications. Postdoctoral researcher at Yangzhou University, China.

在读博士研究生

Mohamed Diaby博士,2018-2022

Education: Graduated from AL-AZHAR University (Egypt), majoring in Animal Production. Postgraduate studies in animal physiology, Cairo University (Egypt). MSc degree in Sustainable Agriculture (Animal Production), a joint degree from Chiang Mai University (Thailand) and University of Hohenheim (Germany).

Research direction and interest: I am engaged in DNA transposon mainly in the animal genomes and their applications as genetic tools. Our research includes animal genome transposon identification, classification, and evolution. Also, I am mining for high active DNA transposons and testing their activities in the human cells.

Numan Ullah博士, 2018-2022

Numan heals from Northern Pakistan with an Undergraduate and Master’s degree from Peshawar, Pakistan. He joined Yangzhou University in the fall of 2018. His PhD research involves characterizing new CRISPR-Cas systems and improving their efficiency by developing fusion proteins. He is interested in developing improved gene-editing systems and their application in gene therapy.

杨乃苏博士,2018-2022

2016年扬州大学动物科学专业毕业,擅长功能基因组学分析和生物信息数据挖掘,目前主要从事基因组转座子挖掘及其应用研究。

ALI SHOAIB ALI ABDALLAH博士,2020-2024

Ali Shoaib Moawad from Egypt with an undergraduate and master’s degree from Kafrelsheikh University, Egypt. He works as Assistant Lecturer, Animal Production Department, Faculty of Agriculture, Kafrelsheikh University, Egypt. He joined Yangzhou University in the fall of 2020. His PhD research includes Retrotransposons annotation and evolution in the genome of livestock.

郑尧博士,2021-2025

2016年江苏畜牧兽医职业技术学院专科毕业;2017年扬州大学动物科学与技术学院毕业;2021年扬州大学畜牧学专业硕士毕业;目前博士研究生阶段就读于扬州大学畜牧学专业,主要研究的方向是扬大BBY小型猪培育和RNA转座子插入位点对基因、基因组以及表型的影响。对于SINE、LINE、ERV不同类型的RNA转座子分类,本人目前主要对SINE转座子作为研究对象,借助比较基因组学的方法,进行生物信息学的分析并挖掘猪全基因组水平的SINE转座子多态插入位点,同时根据插入位点的坐标分析,探究SINE转座子与靶基因、lncRNA之间的互作关系,从而揭示SINE转座子对插入多态对基因、基因组以及表型存在重要的影响。

石莎莎博士,2022-2026

2015.09-2019.06就读于河南科技大学动物科学与技术学院,专业:动物科学;2019年-至今就读于扬州大学动物科学与技术学院,专业:畜牧学;主要研究方向:DNA转座子的挖掘及应用,主要包括(1)转座子鉴定、分类、进化、注释等研究;(2)高活性DNA 转座子的挖掘、验证及转座子技术在转基因中的应用。

Asare Emmanuel博士,2022-2026

Graduated from Animal Science in 2021, with a master’s degree in Animal Husbandry in 2021. Currently studying for a Doctorate Degree in Animal Genetics, Breeding and Reproduction

在读硕士研究生

Addy George

何佳硕士,2021-2024

2021年扬州大学动物科学专业毕业,目前动物遗传育种与繁殖专业硕士在读,主要研究影响猪生长发育的重要反转座子分子标记,为研发与应用反转座子标记提供依据。

郭梦可硕士,2021-2024

2021年河南牧业经济学院动物科学专业毕业,目前动物遗传育种与繁殖专业硕士在读,主要研究CRISPR/Cas系统同源蛋白的挖掘与开发。

王冰清硕士 ,2022-2025

2022年扬州大学本科毕业,主要研究动物基因组转座子,包括转座子的挖掘、鉴定、分类、进化分析以及活性转座子开发、优化与应用。

向奎琳硕士 ,2022-2025

2022年扬州大学本科毕业,目前动物遗传育种与繁殖专业硕士在读,主要从事转座子鉴定、分类、进化、注释以及高活性DNA转座子的挖掘、验证。

于淼硕士,2022-2025

女,辽宁鞍山,满族。2022年沈阳工学院动物科学专业毕业,现就读于扬州大学畜牧专业硕士,主要研究猪的反转座子插入多态挖掘。

周辰宇,2023-2026

周辰宇,男,江苏泰州,2023年于扬州大学动物科学专业本科毕业,现就读于扬州大学畜牧学动物遗传与育种方向学术型硕士,主要研究方向为猪的反转座子插入多态验证与挖掘

王全,2023-2026

2023年扬州大学动物科学专业毕业,现就读于扬州大学畜牧学硕士,主要从事高活性DNA转座子的挖掘和活性验证。

陈红,2023-2026

2023年扬州大学本科毕业,现就读于扬州大学畜牧学专业,主要从事转座子鉴定、分类、进化、注释以及高活性转座子的挖掘、验证。

客座研究生

肖迎港博士,2023-2027

肖迎港,男,四川成都,汉族。2020年遵义医科大学麻醉学专业毕业,2023年扬州大学麻醉学硕士毕业,目前扬州大学麻醉学学术型博士在读,主要研究方向和兴趣:全身静脉麻醉药毒性;斑马鱼胚胎生长发育;转座子介导的认知功能障碍;生物信息学。

袁文娟硕士,2021-2024

2021年新乡医学院麻醉学专业毕业,目前扬州大学麻醉学学术型硕士在读,主要研究全身麻醉药物对斑马鱼胚胎发育的影响、斑马鱼药物筛选模型。

毕业博士研究生

王亚丽博士,2018-2022 2014年石河子大学动物科学专业毕业,2016年动物遗传育种与繁殖专业硕士毕业,主要研究方向为精准基因编辑工具优化和挖掘。

杜站宇博士,2019-2023 2013年白城师范学院生物技术专业毕业,2017年吉林农业大学生物化学与分子生物学专业硕士毕业,2019年就读于扬州大学畜牧学专业,全日制博士。主要研究方向和兴趣:猪基因组;反转座子结构解析;基因结构变异;哺乳动物毛色相关研究;生物信息学。

陈才,2015-2019

研究方向和兴趣:1、基于活性转座子插入多态为基础的分子标记研发及其在动物遗传育种研究中的应用;2、动物转座组和基因组共进化研究(包括转座子分布、适应、驯化、横向传播及其对基因和基因组进化的影响)。    

沈丹,2016-2020

2013年扬州大学动物科学专业,2016年扬州大学动物遗传育种与繁殖专业硕士毕业,2020年扬州大学动物遗传育种与繁殖专业博士毕业。主要的研究方向是以斑马鱼和小鼠为研究对象,开展DNA转座子的挖掘与应用研究工作。研究生期间,在导师宋成义教授的指导下成功挖掘到了一个斑马鱼(ZeBrafish)的活性转座子,并将其命名为ZB转座子。ZB转座子不仅在宿主斑马鱼体内有较高的转座活性,而且在哺乳动物中也具备较高跳跃的能力,因此可作为高效的遗传研究工具被广泛应用。此外,ZB转座子现已获得国家发明专利授权。

王赛赛,2017-2021

2013年河北科技师范学院动物科学专业毕业;

2015年扬州大学养殖专业硕士毕业;

2021年扬州大学动物遗传育种与繁殖专业博士毕业;

主要研究方向和兴趣:活性转座子的研发,主要通过生物信息学的方法挖掘自主活性的DNA转座子,并研究该转座系统的活性及转座特性;转座子技术在转基因和动物功能基因学上的应用研究。

毕业硕士研究生

关中夏硕士,2019-2022 2019年毕业于扬州大学动物科学与技术学院,目前主要研究方向为DNA转座子的挖掘与转座子介导载体的构建。

迟诚林硕士,2019-2022 2018年山东畜牧兽医职业技术学院专科毕业;2019年扬州大学动物科学与技术学院毕业;2022年扬州大学畜牧学专业硕士毕业。主要研究的方向是基于活性转座子插入多态为基础的分子标记研发及其在动物遗传育种研究中的应用。

贾文竹硕士,2020-2023 2020年扬州大学动物科学专业毕业,现就读于扬州大学畜牧学专业,主要研究方向是转座子的挖掘与改造,希望转座子被更多地应用到医学等领域,发挥潜能与优势。

王梦礼硕士,2020-2023女,河南洛阳,汉族。2016.09-2020.06就读于河南牧业经济学院动物科技学院,专业:动物科学;2020年-至今就读于扬州大学动物科学与技术学院,专业:畜牧学;现阶段进行‘基于结构变异鉴定策略的猪全基因组SINE逆转座子插入多态(RIP)标记开发’的研究。

Cell therapy Referrence

Tn as non-viral vectors in immunetherapy

PiggyBac

A first-in-human clinical trial of piggyBac transposon-mediated GMR CAR-T cells against CD116-positive acute myeloid leukemia and juvenile myelomonocytic leukemia]. Rinsho Ketsueki. 2022https://doi.org/10.11406/rinketsu.63.776

A new approach to CAR T-cell gene engineering and cultivation using piggyBac transposon in the presence of IL-4, IL-7 and IL-21. Cytotherapy. 2018 https://doi.org/10.1016/j.jcyt.2017.10.001

Applications of piggyBac Transposons for Genome Manipulation in Stem Cells. Stem Cells Int. 2021https://doi.org/10.1155/2021/3829286

Anti-leukemic potency of piggyBac-mediated CD19-specific T cells against refractory Philadelphia chromosome-positive acute lymphoblastic leukemia. Cytotherapy. 2014 https://doi.org/10.1016/j.jcyt.2014.05.022

Antileukemic potency of CD19-specific T cells against chemoresistant pediatric acute lymphoblastic leukemia. Exp Hematol. 2015https://doi.org/10.1016/j.exphem.2015.08.006

Anti-proliferative effects of T cells expressing a ligand-based chimeric antigen receptor against CD116 on CD34(+) cells of juvenile myelomonocytic leukemia. J Hematol Oncol. 2016 https://doi.org/10.1186/s13045-016-0256-3

Antitumor activity of EGFR-specific CAR T cells against non-small-cell lung cancer cells in vitro and in mice. Cell Death Dis. 2018https://doi.org/10.1038/s41419-017-0238-6

Autologous antigen-presenting cells efficiently expand piggyBac transposon CAR-T cells with predominant memory phenotype. Mol Ther Methods Clin Dev. 2021https://doi.org/10.1016/j.omtm.2021.03.011

Autologous non-human primate model for safety assessment of piggyBac transposon-mediated chimeric antigen receptor T cells on granulocyte-macrophage colony-stimulating factor receptor. Clin Transl Immunology. 2020https://doi.org/10.1002/cti2.1207

CAR T Cell Generation by piggyBac Transposition from Linear Doggybone DNA Vectors Requires Transposon DNA-Flanking Regions. Mol Ther Methods Clin Dev. 2020https://doi.org/10.1016/j.omtm.2019.12.020

Characterizing piggyBat-a transposase for genetic modification of T cells. Mol Ther Methods Clin Dev. 2022 Mar 22;25:250-263.https://doi.org/10.1016/j.omtm.2022.03.012

Development of non-viral, ligand-dependent, EPHB4-specific chimeric antigen receptor T cells for treatment of rhabdomyosarcoma. Mol Ther Oncolytics. 2021 https://doi.org/10.1016/j.omto.2021.03.001

Development of CAR T-cell lymphoma in 2 of 10 patients effectively treated with piggyBac-modified CD19 CAR T cells. Blood. 2021https://doi.org/10.1182/blood.2021010813

Differences in the phenotypes and transcriptomic signatures of chimeric antigen receptor T lymphocytes manufactured via electroporation or lentiviral transfection. Front Immunol. 2023https://doi.org/10.3389/fimmu.2023.1068625

Direct Delivery of piggyBac CD19 CAR T Cells Has Potent Anti-tumor Activity against ALL Cells in CNS in a Xenograft Mouse Model. Mol Ther Oncolytics. 2020https://doi.org/10.1016/j.omto.2020.05.013

EGFRvIII-specific CAR-T cells produced by piggyBac transposon exhibit efficient growth suppression against hepatocellular carcinoma. Int J Med Sci. 2020https://doi.org/10.7150/ijms.45603

Engineered CAR T cells targeting mesothelin by piggyBac transposon system for the treatment of pancreatic cancer. Cell Immunol. 2018 https://doi.org/10.1016/j.cellimm.2018.04.007

Enhanced Expression of Anti-CD19 Chimeric Antigen Receptor in piggyBac Transposon-Engineered T Cells. Mol Ther Methods Clin Dev. 2017https://doi.org/10.1016/j.omtm.2017.12.003

Enzymatically produced piggyBac transposon vectors for efficient non-viral manufacturing of CD19-specific CAR T cells. Mol Ther Methods Clin Dev. 2021https://doi.org/10.1016/j.omtm.2021.08.006

Evaluation of Nonviral piggyBac and lentiviral Vector in Functions of CD19chimeric Antigen Receptor T Cells and Their Antitumor Activity for CD19+ Tumor Cells. Front Immunol. 2022https://doi.org/10.3389/fimmu.2021.802705

Evaluation of piggyBac-mediated anti-CD19 CAR-T cells after ex vivo expansion with aAPCs or magnetic beads. J Cell Mol Med. 2021https://doi.org/10.1111/jcmm.16118

Inducible secretion of IL-21 augments anti-tumor activity of piggyBac-manufactured chimeric antigen receptor T cells. Cytotherapy. 2020 https://doi.org/10.1016/j.jcyt.2020.08.005

Integration Mapping of piggyBac-Mediated CD19 Chimeric Antigen Receptor T Cells Analyzed by Novel Tagmentation-Assisted PCR. EBioMedicine. 2018https://doi.org/10.1016/j.ebiom.2018.07.008

Investigation of product-derived lymphoma following infusion of piggyBac-modified CD19 chimeric antigen receptor T cells. Blood. 2021https://doi.org/10.1182/blood.2021010858

In Vivo Piggybac-Based Gene Delivery towards Murine Pancreatic Parenchyma Confers Sustained Expression of Gene of Interest. Int J Mol Sci. 2019https://doi.org/10.3390/ijms20133116

Low-cost generation of Good Manufacturing Practice-grade CD19-specific chimeric antigen receptor-expressing T cells using piggyBac gene transfer and patient-derived materials. Cytotherapy. 2015 Sep;17(9):1251-67.https://doi.org/10.1016/j.jcyt.2015.05.013

Manufacturing NKG2D CAR-T cells with piggyBac transposon vectors and K562 artificial antigen-presenting cells. Mol Ther Methods Clin Dev. 2021 https://doi.org/10.1016/j.omtm.2021.02.023

piggyBac-Based Non-Viral In Vivo Gene Delivery Useful for Production of Genetically Modified Animals and Organs. Pharmaceutics. 2020 https://doi.org/10.3390/pharmaceutics12030277

piggyBac-transposon-mediated CAR-T cells for the treatment of hematological and solid malignancies. Int J Clin Oncol 28, 736–747 (2023). https://doi.org/10.1007/s10147-023-02319-9

PiggyBac-Engineered T Cells Expressing CD19-Specific CARs that Lack IgG1 Fc Spacers Have Potent Activity against B-ALL Xenografts. Mol Ther. 2018https://doi.org/10.1016/j.ymthe.2018.05.007

PiggyBac-engineered T cells expressing a glypican-3-specific chimeric antigen receptor show potent activities against hepatocellular carcinoma. Immunobiology. 2020https://doi.org/10.1016/j.imbio.2019.09.009

 PiggyBac-modified CD19-expressing 4T1 cell line for the evaluation of CAR construct. Int J Clin Exp Pathol. 2019https://pubmed.ncbi.nlm.nih.gov/31934091

PiggyBac-engineered T cells expressing a glypican-3-specific chimeric antigen receptor show potent activities against hepatocellular carcinoma. Immunobiology. 2020https://doi.org/10.1016/j.imbio.2019.09.009

PiggyBac-Engineered T Cells Expressing CD19-Specific CARs that Lack IgG1 Fc Spacers Have Potent Activity against B-ALL Xenografts. Mol Ther. 2018 https://doi.org/10.1016/j.ymthe.2018.05.007

PiggyBac transposon system with polymeric gene carrier transfected into human T cells. Am J Transl Res. 2019http://www.ncbi.nlm.nih.gov/pmc/articles/pmc6895516/

PiggyBac Transposon-Mediated CD19 Chimeric Antigen Receptor-T Cells Derived From CD45RA-Positive Peripheral Blood Mononuclear Cells Possess Potent and Sustained Antileukemic Function. Front Immunol. 2022https://doi.org/10.3389/fimmu.2022.770132

PiggyBac-Generated CAR19-T Cells Plus Lenalidomide Cause Durable Complete Remission of Triple-Hit Refractory/Relapsed DLBCL: A Case Report. Front Immunol. 2021 https://doi.org/10.3389/fimmu.2021.599493

Phase I clinical trial of EGFR-specific CAR-T cells generated by the piggyBac transposon system in advanced relapsed/refractory non-small cell lung cancer patients. J Cancer Res Clin Oncol. 2021 https://doi.org/10.1007/s00432-021-03613-7

Quantum pBac: An effective, high-capacity piggyBac-based gene integration vector system for unlocking gene therapy potential. FASEB J. 2023https://doi.org/10.1096/fj.202201654r

Rapid response in relapsed follicular lymphoma with massive chylous ascites to anti-CD19 CAR T therapy using PiggyBac: A case report. Front Immunol. 2022 Dec 1;13:1007210.https://doi.org/10.3389/fimmu.2022.1007210

Safety and Efficacy of an Immune Cell-Specific Chimeric Promoter in Regulating Anti-PD-1 Antibody Expression in CAR T Cells. Mol Ther Methods Clin Dev. 2020https://doi.org/10.1016/j.omtm.2020.08.008

Two cases of T cell lymphoma following Piggybac-mediated CAR T cell therapy. Mol Ther. 2021 https://doi.org/10.1016/j.ymthe.2021.08.013

Sleeping Beauty 

AAV-mediated delivery of a Sleeping Beauty transposon and an mRNA-encoded transposase for the engineering of therapeutic immune cells. Nat. Biomed. Eng (2023).https://doi.org/10.1038/s41551-023-01058-6

Targeted delivery of a PD-1-blocking scFv by CD133-specific CAR-T cells using nonviral Sleeping Beauty transposition shows enhanced antitumour efficacy for advanced hepatocellular carcinoma. BMC Med. 2023https://doi.org/10.1186/s12916-023-03016-0

Sleeping Beauty kit sets provide rapid and accessible generation of artificial antigen-presenting cells for natural killer cell expansion. Immunol Cell Biol. 2023https://doi.org/10.1111/imcb.12679

Sleeping beauty generated CD19 CAR T-Cell therapy for advanced B-Cell hematological malignancies. Front Immunol. 2022https://doi.org/10.3389/fimmu.2022.1032397

Generation of CAR-T Cells with Sleeping Beauty Transposon Gene Transfer. Methods Mol Biol. 2022https://doi.org/10.1007/978-1-0716-2441-8_3

Minicircles for CAR T Cell Production by Sleeping Beauty Transposition: A Technological Overview. Methods Mol Biol. 2022https://doi.org/10.1007/978-1-0716-2441-8_2

CARAMBA: a first-in-human clinical trial with SLAMF7 CAR-T cells prepared by virus-free Sleeping Beauty gene transfer to treat multiple myeloma. Gene Ther. 2021https://doi.org/10.1038/s41434-021-00254-w

 Sleeping Beauty-engineered CAR T cells achieve antileukemic activity without severe toxicities. J Clin Invest. 2020 https://doi.org/10.1172/jci138473

 Optimisation of Tet-On inducible systems for Sleeping Beauty-based chimeric antigen receptor (CAR) applications. Sci Rep. 2020 https://doi.org/10.1038/s41598-020-70022-0

Targeting CD33 in Chemoresistant AML Patient-Derived Xenografts by CAR-CIK Cells Modified with an Improved SB Transposon System. Mol Ther. 2020 https://doi.org/10.1016/j.ymthe.2020.05.021

Long-term outcomes of Sleeping Beauty-generated CD19-specific CAR T-cell therapy for relapsed-refractory B-cell lymphomas. Blood. 2020https://doi.org/10.1182/blood.2019002920

Generation of CAR+ T Lymphocytes Using the Sleeping Beauty Transposon System. Methods Mol Biol. 2020https://doi.org/10.1007/978-1-0716-0146-4_9

Shortened ex vivo manufacturing time of EGFRvIII-specific chimeric antigen receptor (CAR) T cells reduces immune exhaustion and enhances antiglioma therapeutic function. J Neurooncol. 2019 https://doi.org/10.1007/s11060-019-03311-y

Universal allogeneic CAR T cells engineered with Sleeping Beauty transposons and CRISPR-CAS9 for cancer immunotherapy. Mol Ther. 2022https://doi.org/10.1016/j.ymthe.2022.06.006

Enhanced Biosafety of the Sleeping Beauty Transposon System by Using mRNA as Source of Transposase to Efficiently and Stably Transfect Retinal Pigment Epithelial Cells. Biomolecules. 2023https://doi.org/10.3390/biom13040658

A highly soluble Sleeping Beauty transposase improves control of gene insertion. Nat Biotechnol. 2019 https://doi.org/10.1038/s41587-019-0291-z

CAR T Cells Generated Using Sleeping Beauty Transposon Vectors and Expanded with an EBV-Transformed Lymphoblastoid Cell Line Display Antitumor Activity In Vitro and In Vivo. Hum Gene Ther. 2019https://doi.org/10.1089/hum.2018.218

Preclinical Efficacy and Safety of CD19CAR Cytokine-Induced Killer Cells Transfected with Sleeping Beauty Transposon for the Treatment of Acute Lymphoblastic Leukemia. Hum Gene Ther. 2018https://doi.org/10.1089/hum.2017.207

Antitumor activity of CD56-chimeric antigen receptor T cells in neuroblastoma and SCLC models. Oncogene. 2018https://doi.org/10.1038/s41388-018-0187-2

Minicircle-Based Engineering of Chimeric Antigen Receptor (CAR) T Cells. Recent Results Cancer Res. 2016https://doi.org/10.1007/978-3-319-42934-2_3

Redirecting Specificity of T cells Using the Sleeping Beauty System to Express Chimeric Antigen Receptors by Mix-and-Matching of VL and VH Domains Targeting CD123+ Tumors. PLoS One. 2016https://doi.org/10.1371/journal.pone.0159477

Enhanced CAR T-cell engineering using non-viral Sleeping Beauty transposition from minicircle vectors. Leukemia. 2017https://doi.org/10.1038/leu.2016.180

Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells. J Clin Invest. 2016 https://doi.org/10.1172/jci86721

Sleeping Beauty Transposition of Chimeric Antigen Receptors Targeting Receptor Tyrosine Kinase-Like Orphan Receptor-1 (ROR1) into Diverse Memory T-Cell Populations. PLoS One. 2015https://doi.org/10.1371/journal.pone.0128151

Manufacture of T cells using the Sleeping Beauty system to enforce expression of a CD19-specific chimeric antigen receptor. Cancer Gene Ther. 2015https://doi.org/10.1038/cgt.2014.69

A new approach to gene therapy using Sleeping Beauty to genetically modify clinical-grade T cells to target CD19. Immunol Rev. 2014https://doi.org/10.1111/imr.12137

 Clinical application of Sleeping Beauty and artificial antigen presenting cells to genetically modify T cells from peripheral and umbilical cord blood. J Vis Exp. 2013https://doi.org/10.3791/50070

 Sleeping beauty system to redirect T-cell specificity for human applications. J Immunother. 2013https://doi.org/10.1097/cji.0b013e3182811ce9

The hyperactive Sleeping Beauty transposase SB100X improves the genetic modification of T cells to express a chimeric antigen receptor. Gene Ther. 2011https://doi.org/10.1038/gt.2011.40

Gene Therapy with the Sleeping Beauty Transposon System. Trends Genet. 2017https://doi.org/10.1016/j.tig.2017.08.008

 Immunotherapy of acute leukemia by chimeric antigen receptor-modified lymphocytes using an improved Sleeping Beauty transposon platform. Oncotarget. 2016https://doi.org/10.18632/oncotarget.9955

Transgene Expression and Transposition Efficiency of Two-Component Sleeping Beauty Transposon Vector Systems Utilizing Plasmid or mRNA Encoding the Transposase. Mol Biotechnol. 2023 https://doi.org/10.1007/s12033-022-00642-6

Contemporary Transposon Tools: A Review and Guide through Mechanisms and Applications of Sleeping BeautypiggyBac and Tol2 for Genome Engineering. Int J Mol Sci. 2021 https://doi.org/10.3390/ijms22105084

Non-Viral Engineering of CAR-NK and CAR-T cells using the Tc Buster Transposon System™https://doi.org/10.1101/2021.08.02.454772

Tc Buster Transposon Engineered CLL-1 CAR-NK Cells Efficiently Target Acute Myeloid Leukemia, blood, 2023 https://doi.org/10.1182/blood-2021-147244

The Tol2 transposon system mediates the genetic engineering of T-cells with CD19-specific chimeric antigen receptors for B-cell malignancies. Gene Ther. 2015 Feb;22(2):209-15.https://doi.org/10.1038/gt.2014.104

Non-viral chimeric antigen receptor (CAR) T cells going viral. Immunooncol Technol. 2023 Mar 9;18:100375. https://doi.org/10.1016/j.iotech.2023.100375

Progress of Transposon Vector System for Production of Recombinant Therapeutic Proteins in Mammalian Cells. Front Bioeng Biotechnol. 2022https://doi.org/10.3389/fbioe.2022.879222

Improving cell and gene therapy safety and performance using next-generation Nanoplasmid vectors. Mol Ther Nucleic Acids. 2023 Apr 7;32:494-503. https://doi.org/10.1016/j.omtn.2023.04.003

Preclinical and clinical advances in transposon-based gene therapy. Biosci Rep. 2017https://doi.org/10.1042/bsr20160614

 Transposon-mediated gene transfer into adult and induced pluripotent stem cells. Curr Gene Ther. 201https://doi.org/10.2174/156652311797415836

Nonviral genome engineering of natural killer cells. Stem Cell Res Ther. 2021https://doi.org/10.1186/s13287-021-02406-6

Potential of transposon-mediated cellular reprogramming towards cell-based therapies. World J Stem Cells. 2020https://doi.org/10.4252/wjsc.v12.i7.527

Non-Viral Gene Delivery Systems. Pharmaceutics. 2021https://doi.org/10.3390/pharmaceutics13040446

Immune cell therapies, CAR-T/CAR-NK

Challenges and new technologies in adoptive cell therapy. J Hematol Oncol. 2023https://doi.org/10.1186/s13045-023-01492-8

CAR T therapy beyond cancer: the evolution of a living drug. Nature. 2023 Jul;619(7971):707-715. https://doi.org/10.1038/s41586-023-06243-w

Bridging live-cell imaging and next-generation cancer treatment. Nat Rev Cancer. 2023https://doi.org/10.1038/s41568-023-00610-5

CAR T-Cell Production Using Nonviral Approaches. J Immunol Res. 2021 https://doi.org/10.1155/2021/6644685

Overhauling CAR T Cells to Improve Efficacy, Safety and Cost. Cancers (Basel). 2020https://doi.org/10.3390/cancers12092360

Advancements in CAR-NK therapy: lessons to be learned from CAR-T therapy. Front Immunol. 2023 May 2;14:1166038. https://doi.org/10.3389/fimmu.2023.1166038

Improving cell and gene therapy safety and performance using next-generation Nanoplasmid vectors. Mol Ther Nucleic Acids. 2023 Apr 7;32:494-503.https://doi.org/10.1016/j.omtn.2023.04.003

Current and future concepts for the generation and application of genetically engineered CAR-T and TCR-T cells. Front Immunol. 2023 Mar 6;14:1121030.https://doi.org/10.3389/fimmu.2023.1121030

CAR-T cell therapy in multiple myeloma: Current limitations and potential strategies. Front Immunol. 2023 Feb 20;14:1101495.https://doi.org/10.3389/fimmu.2023.1101495

2022

Automated, scaled, transposon-based production of CAR T cells. J Immunother Cancer. 2022 Sep;10(9):e005189.http://dx.doi.org/10.1136/jitc-2022-005189

The Past, Present, and Future of Non-Viral CAR T Cells. Front Immunol. 2022 Jun 9;13:867013. https://doi.org/10.3389/fimmu.2022.867013

The future of engineered immune cell therapies. Science. 2022 Nov 25;378(6622):853-858. https://doi.org/10.1126/science.abq6990

CAR-T cells leave the comfort zone: current and future applications beyond cancer. Immunother Adv. 2020https://doi.org/10.1093/immadv/ltaa006

Recent findings on chimeric antigen receptor (CAR)-engineered immune cell therapy in solid tumors and hematological malignancies. Stem Cell Res Ther. 2022https://doi.org/10.1186/s13287-022-03163-w

Transposons: Moving Forward from Preclinical Studies to Clinical Trials. Hum Gene Ther. 2017https://doi.org/10.1089/hum.2017.128

Chimeric antigen receptor-natural killer cells: a promising sword against insidious tumor cells. Hum Cell. 2023https://doi.org/10.1007/s13577-023-00948-w

Engineering CAR-NK cells: how to tune innate killer cells for cancer immunotherapy. Immunother Adv. 2022https://doi.org/10.1093/immadv/ltac003

Video

TE keynote lectures

*Part 1: Introduction to transposable elements (38 minutes) by Susan Wessler

*Part 2: How transposable elements amplify throughout genomes (70 minutes) by Susan Wessler

*Transposable Element-mediated Structural Variation: From McClintock to Pangenomes – YouTube by Susan Wessler, department of Botany and Plant Sciences, University of California (55 minutes)

The Dynamic Genome: Unintelligent Design – YouTube by Susan Wessler department of Botany and Plant Sciences, University of California (60 minutes)

LINE1 by Haig Kazazian Jr – YouTube 43′

阅读更多